Drawing Lewis Structures

- Step #1: Look at the formula for the compound and determine the number of atoms of each element in the molecule.
- Step #2: Determine the number of valence electrons that each atom contributes.
- Step #3: Determine the total number of valence electrons contributed by all of the atoms.
- Step #4: Arrange the atoms to form a skeleton structure for the molecule. The atom that wants the most bonds (HONC rule) is at the center. If there is more than one carbon, the carbon atoms *usually* bond to each other. Hydrogens and halogens can only form one bond, so they are never at the center (unless the molecule is diatomic!)
- Step #5 Join the atoms with bonding pairs so that you fulfill the HONC rule.
- Step #6 Add unshared pairs of electrons so that each nonmetal (except hydrogen) is surrounded by eight electrons (4 pairs).
- Step #7 Count the electrons in the structure to be sure that the number of valence electrons used equals the number available.
- Step #8 Replace bonding pairs of electrons with lines representing bonds:
 - = is three shared pairs, a triple covalent bond
 - = is two shared pairs, a double covalent bond
 - is one shared pair, a single covalent bond
 - DO NOT replace unshared pairs with lines!

You should attempt to construct the following molecules. They are "fair game on the benchmark, as are their structural analogs.

Structural analog = same basic structure with different elements. Example: CF_4 has the same basic structure as CBr_4 and SiF_4 . Example: H_2S has the same basic structure as H_2O

HI	OF ₂	C_2I_4	O ₂	H_2S
CH ₂ O	CS ₂	CF ₄	HCN	C_2H_2
CH ₄	NH_3	CO ₂	CS ₂	H_2O
C_2H_4	CH_2I_2	PF ₃	$C_2H_4F_2$	C_2H_6
NI ₃	HF			

Here are some "challenges" for those of you who need a bit more. They are not "fair game" for the benchmark: Benzene, C_6H_6 Formic acid, HCO_2H Glycine, $NH_2CH_2CO_2H$

Try to build two *different* structures that have two carbons, six hydrogens, and one oxygen!