STRENGTHS OF ACIDS AND BASES

Section Review

Objectives

- Define strong acids and weak acids
- Calculate an acid dissociation constant (*K*_a) from concentration and pH measurements
- Order acids by strength according to their acid dissociation constants (K_a)
- Order bases by strength according to their base dissociation constants (K_b)

Vocabulary

- strong acids
- weak acids
- acid dissociation constant (*K*_a)
- strong bases
- weak bases
- base dissociation constant (K_h)

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

1
2
3
4
5
6
8
9
10
11
11.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- **12.** Acids are completely dissociated in aqueous solution.
- **13.** Diprotic acids lose both hydrogens at the same time.
- _____ **14.** Acid dissociation constants for weak acids can be calculated from experimental data.
- **15.** Bases react with water to form hydroxide ions.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	Column B
16.	strong acids a	ratio of the concentration of the dissociated (or ionized) form of an acid to the concentration of the undissociated acid
17.	weak acids b	bases that dissociate completely into metal ions and hydroxide ions in aqueous solution
18.	acid dissociation constant (K_a)	acids that ionize completely in aqueous solution
19.	strong bases d	bases that do not dissociate completely in aqueous solution
20.	weak bases e	acids that are only partially ionized in aqueous solution
21.	base dissociation function constant (K_b)	ratio of concentration of conjugate acid times concentration of hydroxide ion to the concentration of conjugate base

Part D Problem

Answer the following in the space provided.

22. A 0.35*M* solution of a strong acid, HX, has a $[H^+]$ of 4.1×10^{-2} . What is the value of K_a for this acid?