

THE NATURE OF GASES

Section Review

Objectives

- Describe the assumptions of the kinetic theory as it applies to gases
- Interpret gas pressure in terms of kinetic theory
- Define the relationship between Kelvin temperature and average kinetic energy

Vocabulary

- kinetic energy
- kinetic theory
- vacuumatmospheric pressure
- pascal (Pa)
- standard atmosphere (atm)

.....

- gas pressure
- barometer
- Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The kinetic theory describes the <u>1</u> of particles in matter	1
and the forces of attraction between them. The theory assumes	2
that the volume occupied by a gas is mostly <u>2</u> , that the	3
particles of gas are relatively 3 , move 4 of each other,	4
and are in constant5 motion. The6 between	5
particles are perfectly elastic so that the total <u>7</u> remains	6
constant. Gas pressure results from the simultaneous collisions	7
of billions of particles with an object. Barometers are used to	8
measure <u>8</u> pressure. Standard conditions are defined	9
as a temperature of <u>9</u> and a pressure of <u>10</u> .	10

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

11. Atmospheric pressure is 760 mm Hg.

12. The SI unit of pressure is the pascal.

Name		Date	Class
	13.	Atmospheric pressure increases as you climb a mountain b the density of Earth's atmosphere decreases with altitude.	ecause
	14.	When particles of a substance are heated, some of the ener by the particle and stored in the form of potential energy.	gy is absorbed
	15.	The Kelvin temperature of a substance is directly proportion kinetic energy of the particles in the substance.	nal to the total
	16.	At any given temperature, the particles of all substances ha average kinetic energy.	ve the same

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A		Column B
17.	vacuum a	ı .	an instrument used to measure atmospheric pressure
18.	kinetic energy b).	a space where no particles of matter exist
19.	gas pressure c	с.	the energy an object has because of its motion
20.	atmospheric pressure d		results from the force exerted by a gas per unit surface area of an object
21.	barometer e		results from the collisions of atoms and molecules in air with objects

Part D Questions and Problems

Answer the following in the space provided.

22. A gas is at a pressure of 4.30 atm. What is this pressure in kilopascals? In mm Hg?

23. Describe the motion of particles of a gas according to kinetic theory.

24. What simple evidence demonstrates that gas particles are in constant motion?