Boyle's Law	Charles' Law	Guy-Lassac's Law	Combined Gas Law
For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure		The pressure of a gas is directly proportional to the Kelvin temperature if the volume is kept constant.	Combines Boyle's, Charles', and the Temperature-Pressure relationship into one equation. Each of these laws can be derived from this law.
PV = k	$\frac{V}{T} = k$	$\frac{P}{T} = k$	$\frac{PV}{T} = k$
$P_1V_1 = P_2V_2$	$V_1 T_2 = V_2 T_1$ $\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$P_1T_2 = P_2T_1$ $\frac{P_1}{T_1} = \frac{P_2}{T_2}$	$V_1 P_1 T_2 = V_2 P_2 T_1$ $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

Dalton's Law	Ideal Gas Law	Graham's Law
At constant volume and temperature, the total pressure exerted by a mixture of gases is equal to the sum of the pressures exerted by each gas,	The Ideal Gas Law relates the pressure, temperature, volume, and mass of a gas through the gas constant "R".	The rate of effusion/diffusion of two gases (A and B) are inversely proportional to the square roots of their formula masses. [It can be a ratio of molecular speeds, effusion/diffusion times, distance traveled by molecules, or amount of gas effused]
$P_{total} = P_1 + P_2 + P_3 +P_n$	PV = nRT	$\frac{\text{Rate}_{A}}{\text{Rate}_{B}} = \frac{\sqrt{\text{molar mass}_{B}}}{\sqrt{\text{molar mass}_{A}}}$

Abbreviations	Standard Conditions
atm = atmosphere mm Hg = millimeters of mercury torr = another name for mm Hg Pa = Pascal kPa = kilopascal K = Kelvin °C = degrees Celsius	0°C = 273 K 1.00 atm = 760.0 mm Hg = 76 cm Hg =101.325 kPa = 101, 325 Pa = 29.9 in Hg
Conversions	Gas Law's Equation Symbols
$K = {}^{\circ}C + 273$ $F^{\circ} = 1.8C^{\circ} + 32$ $C^{\circ} = \frac{F^{\circ} - 32}{1.8}$ $1 \text{ cm}^{3} \text{ (cubic centimeter)} = 1 \text{ mL (milliliter)}$ $1 \text{ dm}^{3} \text{ (cubic decimeter)} = 1 \text{ L (liter)} = 1000 \text{ mL}$	Subscript (1) = old condition or initial condition Subscript (2) = new condition or final condition Temperature must be in Kelvins n = number of moles = grams/Molar mass R = 8.31 L-kPa/ mol-K = 0.0821 L-atm/mol-K = 62.4 L-Torr/mol-K You must have a common set of units in the problem

1. Convert the following temperatures to K.	
a) 104 C	
b) -3 C	
2. Convert the following	
temperatures to C.	
a) 67 K b) 1671 K	
3. A sample of nitrogen gas	
has a volume of 478 cm ³ and a pressure of 104.1 kPa. What	
volume would the gas occupy	
at 88.2 kPa if the temperature remains constant?	
4. 8.98 dm ³ of hydrogen gas is collected at 38.8 °C. Find	
the volume the gas will occup	
at -39.9 °C if the pressure remains constant.	
5. A sample of gas has a	
volume of 215 cm ³ at 23.5 °C and 84.6 kPa. What volume	
will the gas occupy at STP?	

6. At a certain temperature, molecules of methane gas, CH4 have an average velocity of 0.098 m/s. What is the average velocity of carbon dioxide molecules at this same temperature?	
7. Find the relative rate of diffusion for the gases chlorine, Cl ₂ and ethane, C ₂ H ₆ .	
8. 495 cm ³ of oxygen gas and 877 cm ³ of nitrogen gas, both at 25.0 °C and 114.7 kPa, are injected into an evacuated 536 cm ³ flask. Find the total pressure in the flask, assuming the temperature remains constant.	
9. A sample of gas is transferred from a 75 mL vessel to a 500.0 mL vessel. If the initial pressure of the gas is 145 atm and if the temperature is held constant, what is the pressure of the gas sample in the 500.0 mL vessel?	
10. A sample of gas occupies a volume of 450.0 mL at 740 mm Hg and 16°C. Determine the volume of this sample at 760 mm Hg and 37°C.	

11. One mole of H ₂ S gas	
escapes from a container by effusion in 77 seconds. How long would it take one mole of NH ₃ gas to escape from the	
same container?	
12. Convert a pressure of 0.0248 mm Hg to the equivalent pressure in pascals (Pa).	
13. Air in a closed cylinder is heated from 25°C to 36°C. If the initial pressure is 3.80 atm, what is the final pressure?	
14. A bubble of helium gas has a volume of 0.650 mL near the bottom of a large aquarium	
where the pressure is 1.54 atm and the temperature is 12°C.	
Determine the bubble's volume	
upon rising near the top where the pressure is 1.01 atm and 16°C.	
15 At what to mean ture	
15. At what temperature Celsius will 19.4 g of	
molecular oxygen, O ₂ , exert a pressure of 1820 mm Hg in a 5.12 L cylinder?	

16. A sample of nitrogen gas, N2, is collected in a100 mL container at a pressure of 688 mm Hg and a temperature of 565 °C. How many grams of nitrogen gas are present in this sample?	
17. What is the pressure in mm of Hg, of a gas mixture that contains 1g of H ₂ , and 8.0 g of Ar in a 3.0 L container at 27°C.	
18. To what temperature must 32.0 ft^3 of a gas at 2°C be heated for it to occupy $1.00 \times 10^2 \text{ ft}^3$ at the same pressure?	
19. What is the pressure in atm exerted by 2.48 moles of a gas in a 250.0 mL container at 58°C?	
20. Determine the molar mass of a gas that has a density of 2.18 g/L at 66°C and 720 mm Hg. (<i>Hint: the number of moles of</i> <i>a substance is its</i> <i>mass/molecular mass</i> <i>and density is mass/volume.</i>)	

CHEMISTRY

GAS LAW'S WORKSHEET

Key

- 1 a) 377 K b) 270 K
- 2 a) -206 C b) 1398 C
- 3. 564 cm³
- 4. $6.71 \, \mathrm{dm^3}$
- 5. 165 cm³
- 6. 0.059 m/s
- 7. rate $Cl_2 : C_2H_6 = 0.650$
- 8. 294 kPa
- 9. 21.8 atm
- 10.. 470 mL
- 11. 54 sec
- 12. 3.31 Pa
- 13. 3.94 atm
- 14. 1.00 mL
- 15. 27°C
- 16. 0.0368 g
- 17. 4332 mm Hg
- **18. 586°C**
- **19. 270** atm
- 20. 64 g/mole